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An example is given of a model dynamics for which the Broadwell model of the 
Boltzmann equation seems to appear in the formal stage of the Boltzmann- 
Grad limit, but actually does not. 
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1. I N T R O D U C T I O N  

In this paper we introduce a dynamical system that seemingly corresponds 
to the Broadwell model of the Boltzmann equation and discuss the Grad 
(or Boltzmann-Grad) limit for it. For the hard-sphere model Lanford (7) 
derived the Boltzmann equation from the BBGKY hierarchy for short 
times by taking the Grad limit. For the present model an analogy is obser- 
ved at the formal level. The BBGKY hierarchy (which may be obtained by 
a formal computation) is valid and its first (or rather last) equation is 
reduced to the Broadwell model by formally passing to the Grad limit. In 
the actual limit, however, the solution of the Boltzmann equation does not 
come out. 

The Broadwell model of the Boltzmann equation in R 2 is the following 
nonlinear equation: 

0 
#t u(t, x)+ v .~q u(t, x) 

=a[u(t,q, iv)u(t,q, - i v ) -u( t ,q ,v )u( t ,q ,  - v ) ]  (1.1) 
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where a is a positive constant, x = (q, v), and q e R 2, while the velocity v 
takes only four possible values from the velocity set 

s := ((1, 0), (0, 1), ( - 1 ,  0), (0, - 1 ) }  (1.2) 

and i denotes the rotation operator, which rotates a two-dimensional 
vector by ~/2 around the origin counterclockwise. (2) An integrated version 
of (1.1) is 

where 

u(t) = U~ f + a fo U ~  s)[u(s)2| ~ ds (1.1') 

[u(t)2|176 = u(t, q, iv) u(t, q, - i v ) -  u(t, q, v) u(t, q, - v )  

and U~ is a group of operators for one-particle free motion: U~ f ( x )  = 
f ( q -  tv, v). For each bounded f e  C((2 ~ (f2 ~ := R 2 x S) there is a unique 
bounded solution u( t )eC(D ~ to Eq.(1.1') on an interval 0~<t< 
(2a r[fd] 00) -1. (The existence results of global solutions are obtained under 
smallness conditions of initial values (e.g., ref. 6) or in the case where the 
initial values are trivial along one space coordinate (if the dimension is 
two) (e.g., ref. 8)). 

Let us briefly describe our dynamical system, which is supposed to 
correspond to (1.1). Let A be a closed square in R 2 whose four vertices are 
(+  1, 0), (0, _+ 1). Given e > 0 ,  a particle is a square in R 2 that is a trans- 
lation of the shrunken square �89 Each particle moves with a constant 
speed v from the velocity set (1.2) between successive collisions. Collisions 
between two particles take place as illustrated in Fig. 1. Let us consider a 
dynamical system of n such particles. It is shown that the triplet or higher 
order collisions may be disregarded, so that the flow of the dynamical 
system is determined for all times for almost all initial phases. Suppose that 
the initial phase is randomly distributed according to a probability measure 

~ 
V~ ~ 4 

V ~ ~ V ~ - -  VI V 1 
i I 

vlv ~v~ 

head-on collision side-to-side collision 

Fig. 1. In our dynamics there are only two (essentially distinct) types of collisions as 
diagrammed, where v and Vl (v* and v*) denote the precollisional (postcollisional) velocities. 
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that has a symmetric density (with respect to the "Lebesgue" measure), 
denoted by f . .  Let u,,i,.(t ) be the density function for the phase of the first 
m particles at time t (m<~n). Then we can derive a chain of equations for 
{U. lm}"m= ~, called the BBGKY hierarchy, the first of which reads 

u.ll(t)  = U~ + 4 ~ ( n -  1) U~ 

[u"12(t)](")(x) = ~ - - ~  ~>o [u"12(t' q' 1)*; q -  d, v*) 

- u.12(t, q, v; q + el, Vl)] d161) 1 

(1.3a) 

(1.3b) 

where dl is a line element of the boundary OA and dv~ is a discrete measure 
that assigns unit mass to each velocity. Let us put e = 1In and consider the 
limit as n --* oo (the Bottzmann-Grad limit), assuming that the family {fn} 
is chaotic with the limiting one-particle density f Then, if unl2(t, xl ,  x2) is 
assumed to split into a product u(t, x l )  u(t, x2) in the limit, the Boltzmann 
equation ( 1.1' ) with a = 4 would result from ( 1.3 ), having u(t) = lim u n 11 (t) 
as its unique solution. This turns out to be false. The fact of the matter is 
that UnFm(t), being convergent, is factorized in the limit for m particles of 
general configurations, but not for those of such special ones as appearing 
in (1.3b), and accordingly the common factor lira u~ll(t ), which is shown to 
be continuous, does not solve (1.1') (see Section 2 for a precise statement). 

The plausibility of the specious hypothesis that u, t2(t ) in (1.3) be 
factorized in the limit may be accounted for, as in the classical case, as 
follows. First we observe the apparent fact that the two-particle con- 
figurations appearing in the integrand on the right-hand side of (1.3b) are 
those of incoming collisions, i.e., of two particles that are about to collide. 
We then note that, on one hand, we may virtually neglect all the side-to- 
side collisions (cf. Fig. 1), since their effect on the correlation functions 
disappears in the limit, and, on the other hand, the head-on collisions are 
rarely repeated between the same pair of particles--this is not the case for 
the side-to-side collisions--and there seems to be no reason for two par- 
ticles that are about to make a head-on collision with each other to have 
interacted in the past (but after time zero) directly or indirectly through 
head-on collisions (see Fig. 2). If so, the correlation function for such par- 
ticles (like that for those in general configurations) would inherit the chaos 
property of the initial distribution: thus, the hypothetical factorization of 
unl2(t ) in the limit. 

What is wrong with the reasoning above? If we interpret the interac- 
tions as collisions between the two particles or their "ancestoral" particles 
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J 

Fig. 2. (Left) Side-to-side collisions are repeated between the same pair of particles with a 
good probability; (right) head-on collisions are not. 

(i.e., their being traced back to a common "progenitor" particle), then it is 
negligible (as shown in the Appendix), but its negligibility does not imply 
the chaos property in question. The fact is that what causes correlations 
between our two particles is not these negligible collisions, but an inter- 
action of a remoter kind (see discussion in the last part of Section 2). 

For the mathematical proof of our claim, given in Section 3, we 
employ the series expansion of u ,  l l ( t  ) obtained from the BBGKY 
hierarchy, which will display the mechanism that makes the Boltzmann 
equation (1.1') fail to emerge from our dynamics: in the addition-backward 
flow evolution that determines the correlation function via the series expan- 
sion there persistently take place collisions (other than those caused by the 
particle additions) throughout in our passing to the Grad limit for the 
present mode l I th i s  is not the case for the hard sphere model. 

Grad ~4) afforded an excellent insight into the problem of deriving the 
Boltzmann equation from the Liouville equation, in which he seemed to 
anticipate some crucial points in Lanford's derivation. This may be 
paraphrased that the latter, being concrete and mathematically presented, 
makes transparent the (corresponding) parts of what Grad advanced in a 
general setting without mathematical precision. The analysis of the present 
model, for which the Boltzmann equation does not appear in the Grad 
limit, would serve as another illustration of Grad's remark that a very 
small part of the n-particle phases controls the formation of the one- 
particle distribution; in our model that very part badly behaves, which is 
not apparent unless the situation is carefully examined. 

Most of the results of this paper were announced in ref. 10. 

2. THE M O D E L  D Y N A M I C S ,  THE B O L T Z M A N N - G R A D  LIMIT,  
A N D  THE RESULT 

This section is divided into four parts. The model dynamics is 
described in the first part. The corresponding BBGKY hierarchy, which is 
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introduced in the second part, would seem to be reduced to the Boltzmann 
hierarchy that corresponds to Eq. (1.1) if one formally passes to the 
Boltzmann-Grad limit. This is denied by Theorem 1 of the third part, 
where the actual limit is compared with the solution to Eq. (1.1). Also in 
the third part we state another theorem, Theorem 2, that expresses in what 
sense {un(t)} is chaotic. Some intuitive reasoning that may account for the 
main claim in Theorems 1 and 2 is advanced in the fourth part. The proofs 
of Theorems 1 and 2 are given in Sections 3 and 4, respectively. In the first 
two parts below we state several facts without proof. For these see ref. 11 
(also see refs. 1, 5, and 9). 

2.1. The Descr ipt ion of the Model  

Let A be a square (a closed domain) in R 2 whose four vertices are 
(_+ 1, 0), (0, -_t-_ 1). A particle is a square in R 2 that is a translation of the 
shrunken square lea  (e>0) ;  hence the length of its diagonal is e. The 
position of a particle is represented by a point of intersection of its 
diagonals. Thus, a particle located at q is a square whose vertices are 
q+(+e/2,0), q+(O, +e/2). Each particle moves with a constant speed 
v e S : = { ( + l , 0 ) ,  (0,+_)} between successive collisions. A collision 
between two particles takes place when they properly touch each other 
with their sides, i.e., they come into positions q and q~ such that 

1 
l:=-(q~-q)eOA\{(+l,O),(O, •  

For the extremal case lE {(+_ 1, 0), (0, +_ 1)} the whole system is stopped 
and sent to the extra state ~ at the moment of touching. Let v and vl be the 
velocities of two particles before the collision. For a possible collision 

l.v>O and l.vl <O 

Velocities v* and v] ~ after collision are defined by 

v*=aiv, v*=aivl if v . v l = - I  (2.1) 

v * = v l ,  v * = v  if v - v 1 = 0  (2.2) 

where a =  1 or - 1  according as (iv).l<O or (iv).l>O, so that 

l . v * < 0  and l.v*>O 

(see Fig. 1). We shall call collisions of the type (2.1) [resp. (2.2)] head-on 
[resp. side-to-side]. The multiple (i.e., triple or higher order) collision is 

822/52/1-2-22 
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undefined and when the system comes into a configuration of multiple 
touching it is sent to ~3. This virtually defines the dynamical system of n 
particles whose phase space is 

~'~n=~(e): = {X=(Xl ; . . . ;Xn ) :~  l (qi-qj)q~A\OA if i r  j}  

where x i - ~ -  (qi, Vi), qi ~ R2, and vi e S. The boundary of s is given by 

~ r  = { X  = ( X  1 ; . . . ;  Xn) e 0 n : ~,--l(q i -  qj) ~ OA f o r  s o m e  i # j }  

For the sake of convenience we identify with ~3 every formal configuration 
in which at least two particles occupy a region in common and put 
f(~?) = 0 for any function f defined on f2,, understanding the extra point 0 
to be added to g2 n as an isolated point. Let Ttx, t~ R, be the left con- 
tinuous version of the trajectory in f2n w {~3 } traced by the system starting 
at x E Of 2n at time zero (the left continuity is asserted as long as the system 
is in I2n). 

Let dv stand for a discrete measure on the velocity space S which 
charges each point with unit mass and put dx = dxl dx2. . ,  dxn and dx~ = 
dqi dye. Then the n-particle phases (i.e., the configurations of positions and 
velocities of n particles) that eventually (in past or future) lead to multiple 
or corner-to-corner collisions form a dx-null set, and the flow Tt preserves 
the measure dx. For  the proof of the latter statement as well as a 
manipulation of the collision integral the following relation is crucial: for 
every bounded, measurable function F on S4x 0A 

f F(v, vl ; v*, v*, l) dv dr1 dl 
v . l > 0  
v I . l < 0  

= f  F(v*,v*;v, Vl, - l )  dvdvldl (2.3) 
v.l>O 
Vl . / < 0  

where the integrals extend over all points of S2x OA that satisfy the 
indicated constraint. 

We shall call dx the "Lebesgue" measure (on O,). The measure on 
~3s n naturally induced from it we also call "Lebesgue" measure. The 
measure-theoretic terms such as "a.e." or "Lebesgue null" will refer to the 
corresponding notions with respect to these "Lebesgue" measures. When 
we want to elucidate the dependence on n or e of 7",, we shall write T[n), 
T} ~), or T~ ",~>. 
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2.2. The B B G K Y  Hierarchy 

Let f~ =fn (x )  be a bounded and integrable Borel function on ~ that 
is symmetric, i.e., invariant under any permutation of components Xl,..., x~. 
The image measure of f , ( x )  dx under Tt has a density given by 

u n ( t , x ) = f ~ ( T - t x )  

We denote by Unlm(t) its marginal density for xl ..... Xm: 

Unlm(t, Xl ,--.; Xm) = f Un(t, Xl ;..'; Xm; Xrn+ 1 ; '" ;Xn) dXm+ 1 """ d X n  

(m = 1,..., n - 1 )  and put unl,(t)--= un(t). We shall assume 

fn is continuous at a.a. points of Qn (2.4) 

i.e., there exists a Lebesgue null set A of O n such that f ,  is continuous at 
each point of (2,\A. [-Instead of or in addition to (2.4) we may assume the 
continuity along trajectories as in refs. 5, 7, or 9 without giving rise to any 
essential change in what follows.] Under the condition (2.4) the evolution 
of Unlm(t ) is described by the following system of equations: for all t ~ R  
and for l < . m < n  

Untm(t)=Um(t) fnlm+e(n--m) Um(t-s)Km,m+lUnlm+l(s)ds a.e. on (2n 

(2.5) 

where Um(t ) g ( x ) =  g(T('t)x), x e ~2 m (the evolution operator for the m-par- 
ticle system) and 

Kin, m+ 1 g ( x l  ;...; X m )  

:x/2 ~ f {g(...;qk, v*;...;qk-el, v*)-g(...;qk+d,v)}dldv 
k = l  v. l>O 

vk" l < 0 k th entry t%'x" (m + 1 ) th entry " / ~  

The operator Km,  m + |  may act at least on a bounded function g on g2,, +1 
which is continuous at a.a. boundary points of f2m+l, i.e., there exists a 
Lebesgue null set B of ( ~ m  + 1  such that g, as a function on s + 1, is 
continuous at each x e ~?~,, + I\B. It is shown that 

if A is a Lebesgue null set of f2 n, 

then T,x 6 A for a.a. (t, x) e R x ~?~2, (2.6) 
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and, by applying (2.6), that under (2.4) the continuity condition for g men- 
tioned above is satisfied by U, im+ ~(t) for a.a.t. The chain of equations (2.5) 
is the BBGKY hierarchy for the present model. On the formal level it is 
deduced by having the whole interaction effect approximated with the sum 
of pairwise ones (cf. Section 1 of ref. 11), or, as in ref. 3, by applying the 
Gauss divergence theorem, the justification of which, however, might need 
some nontrivial analysis. In any case we can prove (2.5) under (2.4). One 
can iterate the relation (2.5) to obtain 

n m 

u, lm(t, x ) =  Y, (n--m)k8k(OffK)k{Um+k(')fnlm+k}(t, X) 
k = 0  

for all t~>0, where (n)o = 1, ( n ) k = n ( n - 1 ) . . . ( n - k +  1), 

a . e .  o n  ~2 m 

(2.7) 

~ t  

~llmf(t, X)=Jo Um(t- s) f(s, .)(x) ds, 

( a~l K ) k = ~ l m  K m ,  m + 1 " " " 8][m + k _ l , m + k 

f =f(s, x) 

2.3. S ta tement  of the Result 

For a bounded, continuous f the (unique) local solution of Eq. (1.1') 
is given by the infinite series 

u(t, x) = ~ (q/~176176 ,( .)f(~+ l)| x) 
k = 0  

(2.8) 

which converges uniformly in 0~< t~< to, x =  (q, v) if to< (8 ]]fli~) 1. Here 
U ~ and q/o are defined as Um and ~',, but with the flow T o of the free 
motion of m particles in place of T~ ~), and K~ is as Km, m+l by putting 
e = 0 in the integral that defines the latter; | denotes the outer product, 
e.g., f2| The phase space of m point particles is 
denoted by (2 ~ Now let us take the Grad limit, which is the limit or the 
process of passing to the limit such that n --+ o0 and ne --* 1 (in Theorems 1 
and 2 below we shall put e = 1In for the sake of simplicity). Since a in (2.3) 
takes values 1 or - 1  with equal weight in (2.7) and the effect of side-to-side 
collisions on the correlation functions disappears in the Grad limit, the 
series expansion (2.7) with m =  1 seems to lead to (2.8), or on a more 
formal level the relation (1.3) seems to be reduced to (1.1') if u,j2(t) is 
factorized in the limit. This is not true. The function u,lm(t, x) converges 
and, except for a very small set of x, is factorized in the Boltzmann Grad 
limit if f ,  lm does and is, but the common factor lira unl~(t) does not solve 
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(1.1'). The precise statement are given in the following theorems, where we 
put 

d m = {x ~ f2~ q~ = qj for at least one pair i C j} 

T h e o r e m  1. Let f ,  be a symmetric Borel function on ~2~ ~/") satisfy- 
ing (2.4), n = 1, 2,.... Assume that there are positive constants C and M and 
a continuous function f on f2 ~ such that, for m = 1, 2 ..... 

and 

[[fnlm[l~o~CM" for m<<.n 

fml ,  --+ fro| (n ~ oo ) uniformly on each compact set of ff2~ 

Then (i) for every m =  1, 2,..., 0 ~ < t < ( 1 6 M )  -~, the right-hand side of the 
series expansion (2.7) with e = 1In converges to a limit function, denoted by 
u('~)(t, x), as n ~ oo for all x e D ~ and the convergence is uniform on each 
compact set of the (open) set Jm(t) := {X ~ (20m: T~  ~ dm for all 0 ~< s ~< t}; 
hence, for each compact set K c  Jm(t) 

ess sup lU, lm(t, X) -- u(m)(t, X)I ~ 0 as n ~ oo 
x G K  

(ii) u(~)(t, x)  depends only on f (not on the particular choice of {fn}), is 
continuous in (t, x), but does not solve the Boltzmann equation (1.1') 
unless f satisfies f ( q  - tv, v) f ( q  + tv, - v) = f ( q  - tiv, iv) f ( q  + tiv, - iv) for 
all x = ( q, v) and O ~ t <~ to. 

Remark I. The identity mentioned last in Theorem 1 holds if and 
only if U ~  solves (1.1') (see ref. 12 for an explicit characterization). If 
this is the case, every term except the first in the series expansion (2.7) 
vanishes in the Grad limit so that u(l)(t) agrees with U ~  and thus 
solves (1.1'). 

The proof of the last claim in Theorem 1, the main assertion of this 
paper, will be carried out by demonstrating the relation 

lim t -  3[u(t, x)  - u(1)(t, x)]  
t,~o 

= (32~9)If(q,  iv)Zf(q,  - i v ) z - - f ( q ,  v )Z f (q ,  --v) 2] (2.9) 

where x = (q, v) and u(t) is a unique solution of the Boltzmann equation 
(1.1') with a = 4 .  

The next theorem states that u('~)(t) in Theorem 1 is factorized except 
m it on a hypersurface of D ~ Let rn m ' + m "  (with m', ~> 1). Let 

A(t; m', m") be the set of all configurations x = (x'; x " ) e f t ~  m with x' e f t ~  m, 
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and x" E f2~ ,, such that some two particles of x, one from x' and the other 
from x", are on a common line at or within the distance 2t from each other 
and their velocities point along the line; in other words, there exists at least 
one pair (j, k) that satisfies 

~ l ~ j . . : m ,  m ' + l < ~ k ~ m  (2.10) 
( v j ' v k r  (qj--qk) '( ivj)  =0, Iqj--qkl <~2t 

Then we have the following result: 

T h e o r e m  2. Let A( t ;m ' ,m")  be as above. If x = ( x ' ; x " ) e g 2 ~  
A(t; m', m"), then 

u(m)(t, x ) =  u(m')(t, X') u(m")(X ") (2.11) 

Otherwise u(m)(l, X) is not generally factorized. 

Remark 2. In view of (1.3), it must be the behavior of unjz(t, q, v; 
q+ l/n, - v )  that should actually be at issue. Let ~,l,,(t) denote the right- 
hand side of (2.7). Then, under the hypothesis of Theorem 1, finl2(/, q, V; 
q + l/n, --v) converges uniformly in (t, q, l )e  K~,N := [6, to] X I--N,  N]2x  
~A for every positive 6 and N, implying that if we denote the limit by 
w(t, l; x), x = (q, v), then, as n --* oo, 

ess sup Iw(t, l; x) - u,,12(t, q, v; q + I/n, - v ) l  ~ 0 
K~,N 

By passing to the limit in (1.3) we accordingly obtain an equation that is 
usually expected to agree with the Boltzmann equation (1.1'), but not for 
the present model: the function w(t) is not resolved into the product 
u(l)(t, q, v) u(l)(t, q, - v ) .  

One might ask what equation characterizes the limit u(l)(t) (it, if any, 
cannot be local in time). Unfortunately, there seems to exist no such 
equation that can be neatly and explicitly written down. 

2.4. Intuitive Reasoning 

It was emphatically pointed out by Grad (4) that the chaos property of 
the correlation functions is immediately destroyed for configurations in 
which two particles have just collided and, in order to assure the validity of 
the Boltzmann equation, it is needed only for those configurations in which 
two particles are about to collide. With these comments in mind, let us 
inspect the condition (2.10), which implies that the j th  and the kth particles 
move along a line in common. Then one may agree that (2.11) cannot be 
expected if a pair (j, k) satisfies (2.10) with VJ" vk = -1  and ( q j -  qk)" Vj ~" O, 
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i.e., the j th  and kth particles must have collided with each other in the past 
up to - t .  What seems strange in the conclusion of Theorem 2 is that (2.11) 
can fail to hold even in the remaining case of (2.10). This can be 
understood without resorting to the series expansion (2.7), as is discussed 
below. 

Let f ,  be the probability density, so that the exposition may be made 
in terms of probability. The side-to-side collisions may be excluded from 
our account. First consider the subcase of (2.10) such that vj.vk = 1, i.e., 
one runs ahead of the other. We may assume that the j t h  particle moves 
ahead of the kth one (see Fig. 3). Then, taking the existence of u(m)(t)= 
lim ~nlm(t) as granted, we compare u(2~(t, xj; x~) with u(1)(t, xj)u(l~(t, xk) 
when t is small. 

We first compute the one-particle density function u(~)(t, xj) up to 
O(t2). Suppose that the present time is t. There are two ways for the par- 
ticle to come into its present phase x j =  (qj, vj): (A) without any collision 
and (B) as a result of a (head-on) collision. To avoid inessential details, 
f = f ( x )  is treated as if a function of v only. Then the contribution to 
u~l)(t, xj) from case A may be written f ( v j ) [ 1 - 4 t f ( - v j ) ] + O ( t 2 ) .  For 
case B we consider the probability that the particle j has made a head-on 
collision during (0, t) and presently occupies a position in a small square 
centered at qj with sides of length 6 and parallel to coordinate axes. For the 
sake of simplicity we put vj = (1, 0) and qj = (t, 0). Let ql and q2 be the first 
and second coordinates of q ~ R 2. Since the probability of making collisions 
twice is O(t2), at time zero the particle j must be found either in a strip 
bounded by four lines q2 = ql + 6, ql = 0, and q2 = t, or else in its reflection 
with respect to the q~ axis. Let the particle be at (ql, q l + h ) ,  kh[ <6 ,  
0 < q  ~ < t  at time zero. If the collision is at the site (ql, y), then [y] <6/2 
and [y-h1 <6/2;  hence, the region in which the partner particle of the 
collision should be found at time zero has the area 2~(6-Ihl) .  Thus, the 
probability in question is, by writting v = v j, 

f6 4e(n-1)t  ( 6 - ] h l ) d h f ( i v ) f ( - i v ) + O ( t  2) 
6 

The value of the above integral is (5 2 and we consequently see that 

uI1)(t, x)= f (v)[1 - 4 t f ( -  v)] + 4tf (iv) f ( - i v )  + O(t 2) (2.12) 

k 

t /~" 
"~v t j 

Fig. 3 
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Now let us turn to the two-particle correlation function u(2)(t, xj; xk). 
If we assume 

I q j - q k l  4 t (2.13) 

then the probability of the j t h  particle being subjected to the case B is 
O(t2), because if we have case B for the j t h  particle but not for the kth, 
then except on a set of (conditional) probability at most O(t)  the k th  par- 
ticle must be scattered by the partner particle of the collision by the j th.  
With the help of (2.12) this shows that under (2.13) 

u(2)(t, xj; xk) = [, 1 - 4tf( - v)] f ( v )  2 + 4tf(iv) f (  - iv) f ( v )  + O(t  2) 

or, what amounts to the same in view of (2.12), 

u(l)(t,  xj)  u(l)(t,  xk)  -- u(2)(t, xj; xk)  

= 4 t f (v ) [ , f ( i v )  f (  -- iv) - - f ( v )  f (  -- v)] + O(t 2) (2.14) 

[-The last relation is immediate if we make use of (3.1).] Therefore, two 
particles that (like particles j and k in Fig. 2) are moving on a common line 
with a common velocity at time t are negatively or positively correlated 
according as f ( i v )  f ( - i v ) -  f ( v )  f ( - v )  is positive or negative, which, as is 
easily seen, may be valid under I q j - q k [  < 2 t  [-instead of (2.13)] with t 
appropriately small. 

The conclusion for the case v ~ = v  s reached above may explain the 
other subcase of (2.10) in question, in which two particles are going to 
collide with each other. Indeed, it suffices to consider another particle 
moving between them with velocity v s or vk. Let it be vj. Then having such 
a particle is correlated with the existence of the j t h  particle and disturbs 
the course of the kth particle to the effect that.this time the j th  and the kth 
particles are positively or negatively correlated according as f ( iv ) f (  - iv) - 
f ( v ) f ( - v )  is positive or negative. [We can directly proceed as before to 
obtain a concrete expression corresponding to (2.14), though the com- 
putation is more complicated: this time the t 2 term becomes relevant.] 
Now it is rather reasonable to expect the invalidity of the Boltzmann 
equation for our model according to the comment by Grad, since two 
particles that are going to collide with each other are correlated even in the 
Boltzmann-Grad limit. 
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3. THE PROOF OF THEOREM 1 

The proof  of T h e o r e m  1 is based on an expression for the r ight -hand 
side of (2.7), which will be given in (3.1). First  let us in t roduce some 
notat ions.  Fo r  x e Q~), l e 8A, v e S, and j = 1, 2,..., m, set 

C}'ot x = (x,  ;...; xj_, ; q:, v*; X j +  1 ;...; X m ; q j -  el, v*) 

c v ' l x  = (X 1 ; . . . ; X m ;  qj + d, v) j ,  1 

if v - l < 0  and v j - l > 0 ;  

CV'lx -- C~'lx = 0 j,o - -  j,l 

i f v . l ~ > 0 o r v  i - l ~ < 0 ; a n d  

v,l __ 

(a is an extra point) .  Then 

Km'm+lg(Xl; '";Xm)=21/2 ~ fe 
j=l  A 

( a = O ,  1) 

[g(Q~x) - g ( Q ( x ) ]  a l  d~ 
MS 

[Poin t s  outside o(~) are identified with a and g ( a ) = 0  by our  conven-  ~ m + l  
t ion.]  Fo r  e>~0, k =  1, 2 ..... n - m ,  xeg2~) ,  and a set of mul t ivar iables  

3 = (s, 1, v, o , j )  

where 
s = ( s l  ..... s k ) e [ 0 ,  oo) e with s l < s z < . . . < s ~  

t = ( t ~  ..... l ~ ) e ( S A )  ~ 

u ( / )m+ i , ' " ,  D i n + k )  ~ S k  

= (~, ,..., ~ )  e {0 ,  1 }~ 

with l<~jp<~m+p-1 ( p = l  ..... k) J = ( J l  ..... Jk)  

we set M (~) x = x  and O,A 

M (~) x vm+k,lk k,a = C)k,~k ----sk+skT(m+k) ~'"C~m~"l~-j~,~, T~,s)+s0 x 

where So = 0. By writing [6l = Z j  a:,  we can write the r ight -hand side of 
(2.7), denoted by fi, Lm, as 

~.~.~(t, x) 
n - - m  m + k + l  

=fnlm(T-,x)  + ~ E Z "'" ~ (--1)l~l(n--m)k ~k2~/2 
k =  l ~ j k =  l j l = l  

(3.1) 
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The mapping x ~ M (o x is made up of successive applications of the k,A 

operation of the time-reversed flow T~ ), and the operation C~I ~ of adding a 
new particle beside the j t h  particle. Correspondingly, we shall be concer- 
ned with the particle history of an evolving system during a time interval 
[-0, t], determined by t, A, and x e 12~), which starts at x at time zero and 
ends in "r~ ~t(~ v at time t. In this system new particles are added a tq_Sk~,alr 

accord!ng to C~'~ at times s~ ,..., sk, so that the number of particles increases 
and the system evolves by the time-reversed flow T~/, n) during time inter- 
vals [sj, sj+~], j=0 , . . . , k  (s0=0, sk+~=t) .  Let us denote the history of 
such a system by D z(') rx [0, t]] .  k ,d  L 

Proof of (2.9). First we prove (2.9) taking the existence of 
limft, l~(t)=u(~)(t) as granted. Both unit(t) and u(t,x) are expressed in 
series as in (2.7) with e = 1/n and as in (2.8), respectively. Let anl~(t, x) and 
ak(t, x) be the kth terms of the series for u(1)(t) and u(t), respectively 
( k = 0 ,  1, 2,...). It is easy to see that limn_,ooa, l k = a  k for k=O, 1, 2 and 

~, ak=O(t4), sup ~ la~lkl=O(t 4) 
k ~ > 4  n k = 4  

Therefore it suffices to show that 

a~ 1):= lira a nl3 exists 
n ~ o o  

and t-3[a3(t)-a~l)(t)] converges to the right-hand side of (2.9). To this 
end, we first observe that anl3(t, x) is the sum of integrals such as 

J"(v, a , j ) :=23 /2 ( -1 )  I"1 ds3 ds2 dsl ~A)3fnl4(T(1/n) ll/f(1/nla'~dl 

over v, n, and j, where A = (s, i, v,~,j). The a3(t , x) is also the sum of 
~tAr ( l / n )  similar integrals with f4| T O and M ~ in place offal4, T (l/n~, and ~.~3.,J , �9 ~ 3 , d  

which we denote by J~ ~, j). Then 

lim J"(v, ~ , j )=J~ n,j) 
n ~ o ~  

except for the following four combinations of a, j, and v: 

~ = ( 1 ,  1, 1), j = ( 1 ,  1, 2), v = ( - v , - v , v )  

~ = ( 1 , 1 , 1 ) ,  j = ( 1 , 2 , 1 ) ,  v =  ( - v ,  v, - v )  

tr-= (0, 1, 1), j =  (1, 1, 2), v=(--v,-- iv ,  iv) 

~ = ( 0 , 1 , 1 ) ,  j = ( 1 , 2 , 1 ) ,  v = ( - v ,  iv, - iv)  
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where v is the velocity component of x. Now we look at the particle history 
~(1/,lrx [0, t] ] for each of these four combinations of ~, j, and v. When the 3 , 3  k ' 

last (i.e., fourth) particle is added at the time s3, the distance between the 
fourth and the third particles is at least 2(s2-s~)-2/n,  so that they can 
possibly collide with each other by t only if 

S 2 - -  S 1 < t - s 3 -~  2/(2n) (3.2) 

Therefore, the limit, as n ~ oe, of the integrand for the integral J'(v, o, j) 
possibly differs from the integrand for J~ ~,j) only on the region 
described by (3.2). But the contribution of the integral over this region to 
J"(v, ~, j) is reduced to 

(--1)l~123/2cAf(q, v) f(q, --v) f(q, iv) f  (q, --iv) t3[1 +o(1) ]  

in the limit of having n approach infinity, so that they cancel out one 
another. Here 

l fo f~3 f~2 1 c : = ~  ds3 ds2 I(s2-s l>t-s3)dSl=2--  ~ 

A:=23/2 [ ( -  l < hl + h2-  h3 < l ) dhl dh2 dh3 = x/2 
--1 --1 --1 

On the other hand, the corresponding parts for a 3 does not cancel. 
Consequently, there exists lim a,i 3 =: a(~) and 

lim 1 [a3( t, x) - a(3U(t, x)] 
,+o t 

= ~ [ f ( q ,  iv)2f(q, - iv)  2 - f (q ,  v)2 f(q, - v )  2] | 

Proof of (i). Let k =  1, 2 .... and A = (s, I, v, o,j), where s =  (Sl,...,Sk), 
etc. Set 

G ( t ) =  {s= (s,,..., s~): 0 < S l <  .-. < s k < t }  

We shall prove that for each t > 0, o, j, v, and x 

x(k)(t, A, x) 

:= lim T (~) M (~) x exists  for a.a. (s, I )eFk( t )x  (c~A) k (3.3) - - t + s  k k,z] 
~ 0  

For the proof of (3.3) we introduce a definition. Given 0 < s < t, we 
would like to specify a group of particles in ok.~(~)~ L-,rY [-0, t ] ]  that run nearly 
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along a line common to them at time s not accidentally but inevitably. We 
call them linearly related at time s. To be precise, this is defined by 
requiring the following conditions: 

(i) Two particles c~ and fl are linearly related at time s if fl is born at 
some time <s  beside c~ by an application of CJ:;, and their velocities point 
in directions opposite to each other at fl's birth and remain unchanged to 
time s. 

(ii) Particles c~ and fl are linearly related at time s also if at some time 
Sl < s the particle fl is born beside or makes a side-to-side (not head-on) 
collision with another particle, say 7, that "has been" linearly related to c~ 
up to si, being given (or obtaining) a velocity equal or opposite to that 
which "was" 7's just before time s~ and the velocities of c~ and fl remain 
unchanged during the interval [s~, s]. 

Given s, ~, v, j [s=(sl,...,s~), etc., k~>3], to, and x we consider all 
possible limits or orbits of particles involved in U :(~) := F (~) rx, [0, to] ] as k, A L  

e + 0 for a variety of L Except for those that stop at c~, they may be drawn 
up by point particles in the corresponding addition-backwardflow 
evolution, where the head-on collision of two particles gives birth to a pair 
of particles that take the same courses as two particles do after the collision 
in IF (~), letting the parent particles pass through each other. This system of 
point particles is denoted by F*. In F (~) there are head-on collisions that 
"inevitably" take place for general choices of A as considered in the proof 
of (2.9). To be exact, these are collisions between two particles linearly 
related at time s and result in their changing velocities for the first time 
after s. We may "accidentally" have a head-on collision caused by a special 
choice of s (this is a head-on collision other than inevitable ones). By 
arguing using F*, it is easily seen that, except for s from a Lebesgue null 
set, we have: 

(a) There is no "accidental" head-on collision in F (~) for sufficiently 
small e. 

Similarly, except for negligible s, in F* there is no twin or multiple collision 
and every collision time is different form si, so that for sufficiently small e 
we have: 

(b) Every but one pair of two particles in F (~) are apart from each 
other more than ke at each of si and of collision times. 

In the following discussion we assume that (a) and (b) are valid. It is 
noted that no side-to-side collision can be "accidental." 

Let two particles from 2 (8), say ~ and/?, be located at time s in such a 
way that they can make a side-to-side collision between themselves after at 
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most  one change of velocity each if their courses to the collision are not  
intercepted;  then we say that  c~ and fl are collaterally related at t ime s. Let 
x', = (q',, v',) and x~ '=  (q~', v~') be the phases  of c~ and /3, respectively. Fo r  
convenience of exposi t ion let them be si tuated at t ime s as in Fig. 4 (recall 
that  the mot ion  is backward  in t ime) and suppose  that  ~ turns to the left at 
t im ' " " " ' . . . .  e t  > s a n d f l t o t h e n g h t a t n m e t  ~ (s, t ). Put  v =  v s . T h e n v ~ = w a n d  

- -  ] �9 y~ ! �9 . 

we see that  a := (x /2e)  (v + w) .  (qr - q , )  is independent  of t > s  before 
the collision that  tak" es place if and o n l y  if [a[ < 1 / , ,~ .  Suppose  lal < 1/.,/2 
and the collision occurs at  t ime z. Then  q~" = q'~ + el ~,' where 

l~'~ =-~2 a(v + iv) + ~ (v -- iv) 

If  c~ and fl repeat  a similar evolut ion after ~, then the same vector  l ~ ' '  
relates the posi t ion of fl to that  of c~ at the t ime of the next collision. If  at 
t ime t" the particle fl, instead of turning to the right, collides with or  gives 
birth to ano ther  particle, say 7, whose phase  just  after the collision or its 
birth is (q'[,,+dl, v) with some l leOA, then the vector  l ~'~, which is 
ana logous ly  defined, equals 2 lna~(iv + v) + 2 - 1 ( v -  iv), where a~ = a + 
2 in(v + iv). ll. The other  possibili ty is t reated in the same way. The  case 
when c~ and /? are linearly related is discussed analogously  (and more  
simply);  in part icular ,  the vector  l ~'t~ is defined also in such a case. N o w  it is 
clear that  if the vector  l ~ ' '  is independent  of e for each pair  of particles c~ 
and fl that  are linearly or collaterally related at t ime s, then it is so just  
after the first collision subsequent  to s and hecne ever since s. Thus,  the 
courses taken by particles in 0 :~) eventual ly become  independent  of  ~ as 
e$ 0. This proves  in par t icular  the claim (3.3). 

The  same a rgument  that  p roved  (3.3) (see also the beginning of the 
p roof  of  Theo rem 2 in Section 4) proves  that  if x ~ f2~ (note that  the case 
x ~d,~ is trivial), then for a.a. (s, l)E Fk(t)x  (OA) k 

T(~) A,t(~) Y converges  as e ~ 0 
- -  t - b  s k  a ' ~  k ,  z l  ~ 

~- / -y  (v-iv) 

v~ i = ' 
B /j (v+iv) 

1 
l 
1 i l 

V O ~  I 

Fig. 4. Two particles a and fl are located at time s in such a way that they can make a side- 
to-side collision between themselves after just one change of velocity each in their motion 
backward in time. 



348 Uchiyama 

Hence finlm(t, X) converges in view of the expression (3.1). The claimed 
uniformity of the convergence is proved as in the classical case (ref. 11, 
Appendix II). | 

Proo f  o f  (ii). We have already proved (2.9). The continuity of 
u(1)(t, x)  follows from (3.3) in the proof of (i). In fact, if we set 

g(t, x, s) = ~ f(k+ l)| j ,  x)) dl 
J~ #A )k 

[-where x ~k) is defined in (3.3)] with k, v, ~, and j fixed, then g is con- 
tinuous in x for each t, s, because any shift of q [-x = (q, v)] only results in 
the same shift of each position component of x~)(t, d, x). And, as h --* 0, 

~ t + k f~2 
= ds~. . ,  d S l g ( t + h , x , s ) + O ( h )  

~h 

= dsk . . ,  dsl g(t, T~ s) + O(h) 

where we applied the relation 

g(t, x, s 1 + h,..., s~ + h) = g(t  - h, T~ x, sl ..... sk) 

This shows that u ( l ~ ( t + h , x ) = u ( ~ ) ( t , T ~  because u (~ is a 
uniformly convergent series of such integrals of g(t, x, s) as above. 
Therefore u(~)(t, x)  is continuous in (t, x). | 

4. THE PROOF OF T H E O R E M  2 

Before proceeding to the proof of Theorem 2, we introduce some 
definitions, which will allow us to write down Eq. (4.4) below. For 
m =  1, 2,..., k =  1, 2 ..... the symbol Jm,~ denotes a set of multi-indices 
] = (Jl,..., Jk) such that 

l ~ j a < ~ m ,  1 ~ j2  ~<m + 1,.. . ,  l ~ j k < ~ m + k - - 1  

Let m'/> 1 and m"/> 1 be such that m' + m" = m. We define j' ~ Jm',k' and 
J"~ Jm",k", which are to be determined by j ~Jm,~ together with m' and m", 
in such a way that in the particle addition scheme specified by j and 
x =  (x', x"), X'~Om, ,  X"~s the decomposition of j into ]' and j" 
corresponds to the (natural) decomposition of the "descendents" of x into 
those of x' and of x". To do this we introduce a family tree of integers 
associated with ]. There are k +  1 generations in the tree. The vth 
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generation consists of integers 1, 2 ..... m + v and is decomposed into two 
families I'v and I;', v = 0, 1,..., k, which are inductively defined by the follow- 
ing conditions: 

/~={1  ..... m'}, I ~ - - { m ' + l , . . . , m }  

and for v ~> 1 

I'~ I',, 1 k..) {m + v } and 1,7 = I" 1 if j~ a I' - -  v - - 1  

I'vmI'v 1 and I ' ~ ' = I ~ w { m + v }  if j v~ I~  1 

If j~ gives birth to the (m '+  r)th member of I; ,  i.e., 

jvSI 'v_  1 and r =  # I ' v - m '  (4.1) 

( #  denotes the cardinality of a set) and if iv equals the j t h  element of I'~_ 
(elements of I'v and I~; are arranged in increasing order), then we set j '~=j  
and define k ' =  # I ~ -  m' and 

j '  = (j'~ ..... j; ,) if k ' > 0  
(4.2) 

= 0  if k ' = 0  

j" is defined similarly. Let s = (s~ ..... Sk), etc., be given as before. According 
to the transform j--* (j', j"), we define the decompositions (s', s"), (!', l"), 
(o', o"), and (v', v"): for example, 

s'r=sv (4.3) 

if (4.1) holds (sv is attached to the first family or the second according as Jv 
belongs to I'v or L'). 

Proof  o f  Theorem 2. By the same argument as in the proof of (3.3) 
we can show that if x' and x" satisfy the hypothesis of Theorem 2, then for 
a.a. (s, i ) e F k ( t ) x  (0A) k there occurs no collision between any descendant 
of x' and any one of x" in ~:(k~)~ [X, [0, t] ] eventually as e + 0. This, together 
with the proof of (i) of Theorem 1, implies that for a.a. (s, 1) (and all v, ~, j) 

lim fnlk+ ~T(1/n) M(1/n)(x ' x")) ml. - - t+Sk  k ,d  "~ n ~ o o  

, , ( T ( 1 / n )  A A r ( 1 /n )  u  = f(m + k )| -- l i r a  ~_ ,+ 4,~'~ ~'.~"" J 

x f ~m'+k')| ( l i r a  T ( 1 / n )  t~Af(1/n) ~Zz'~ - _ ,  + 4, ~,~ k,, ~,,~ j (4.4) 

/t l 1 ! where Ai=(s ' ,  l ' , v ,  •,j '), i =  or 
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Let us fix t, x', and x" which together satisfy the hypothesis of 
Theorem 2, and set, for s ~ Fk(t)  and j e Jm, k 

f~  = f ( T ~  ') 

f j , (s ' )  = f j , ( s ]  ..... s~,) 

If f(m'+k')| Tll.) AX(I/n)X'] dl'  dv' ~ E (_1)1~'1 ~--t+s'k,~'~k',A" # 
Od 

f~',,(s") is defined similarly. (Below, statements like this will be omitted on 
the understanding that  the definition for an object carrying double primes 
is parallel.) Then 

limoo Unlm( t , X )  

k = l  j e d m ,  k 

1 . . .  

The required relation u(m)(t, X)=u(m')(I, X r) u(m")(t, X") follows from the 
next lemma. 

Lemma. Let fj, m(S), film(S), J~Jm, k be a family of bounded, 
measurable functions of s: 0 < sl < . . .  < sk < t (k = 1, 2 , . ,  m = 1, 2,...) and 
f'O,m and fO, m real numbers (m = 1, 2,...). Then, for every k, m, and pair 
(m', m, )  with m' + m" = m, 

k ;;2 
dsk dsk_ l "." dsl f j ,  m,(S') f;r-,m,,(S" ) 

J ~ J m ,  k 

= • F',k,F",, ,k,,  
k'+k"=k 

(4.5) 

where 

F~, o = f'o, m 

F~n,k = Z risk "'" ds1 fLm(s) 
j E Jm,k ' 

[similarly for F~,,k; j--+ (j', j") and s--+ (s', s") are defined by (4.1)-(4.3)], 

Proof  Let us reverse the order of integration on the left-hand side of 
(4.5). If we set 

gj, m(Sl . . . . .  Sk )=  f j ,  m( t - -  S1 . . . . .  t - -  Sk) 
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then it becomes  

and also 

ds 1 . . .  as k gi,,m,(S') gj',, m,,(S") (4.6) 
jeJm, k 

fO f ~O k 1 t F'~,k = 2 d s , . . ,  dsk gj,,m,(S) 
j E Jm, k 

We proceed by induct ion o n  k. For  k = 1, (4.5) holds.  Let (4.5) be valid for 
k = p and for all m = 1, 2 ..... For  j c Jr~ + l,k, J = 1 ..... m, and s~ < s < t set 

t 
~ .  j ,m(S,  S ) =  g(j.j).m(S, S1,...  , Sk )  

where ( j , j ) = ( j ,  j l , . . . , jk)EJm, k+ 1. Then (4.6) with p +  1 in place of  k is 
written 

m' 

2 Y 
j = l  J~Jm+l,p 

m" 

+2  

ds ds, . . .  sp dsp ~},j, m,(S, S') gj',,,m,,(S") 

; o ; o  ;o . . . . .  2 ds d s l ' "  sp l ds p gm',i '(s ) gJ, J",m "(s' S") 
j = l  jGJm+[, p 

[Recal l  s ~ (s', s") is determined by j.]  By the induct ion hypothes is  this 
equals 

m' ! m" l 

Z O jo- fo " F,.'.zp(slds+ s fO.m" F'~,,,j,p(s)ds 
j=]  j = l  

+2 ~ ds - '  Fm'Lk ' (S )  h~, , , ,k , ,_~(sl)dsl  
, . = k +  p 

m" I 

+j~, ds m,j ,k , , (S)  h~,,~,_l(st)ds~ (4.7) 
" = 2  k ' +  = p  

where 

P~,,j, o(S) = ~j,m(s) 

JE Jm+ l,k 

hm, o(Sl) = ~, g'j;m(S1) 
j = l  

d s  k gj- j ,m(S,  S) 

f•L Iok I h' m,~_,(s ,)= Y. ds2.-- ds~ gj, m(S) 
jEJm, k ' 

822/52/1-2 23 
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By the relations 

~ i  i Fm,j.k(S ) -- -- hm, k(S), 
j--1 

(i= 

This completes the proof of the lemma. 

Uchiyama 

foh2,~ l(s) ds = i F~,x 

' and "), which are immediate from definitions, we see that (3.9) equals 

Z Fm',~'F,~",k" 
k'+k"--p+l 

I 

A P P E N D I X  

In this Appendix f,, is a symmetric probability density satisfying the 
continuity condition (2.4). We consider the n-particle system described in 
Section 2. We show that recollisions are negligible in the Grad limit at least 
for short times under some boundedness conditions of fn[m" Here the 
recollision is taken in a broad sense: it is a collision between descendant 
particles of the prescribed progenitor particle (or particles). 

Given a particle (the progenitor), a particle is its descendant in the 
time interval (0, t) if (i) it is the progenitor itself, (ii) it collides with the 
progenitor during (0, t), or (iii) it collides with a descendant of the given 
particle during (s, t), where s is the time of the collision that makes the lat- 
ter a descendant in (0, t). (To be precise, the set of descendants is defined 
as the smallest class that satisfies these three conditions.) A descendant is 
said to be born at the time s if s is the time of the collision that makes it a 
descendant. (The birth time of the progenitor is taken to be 0.) We count 
as collisions between two descendants of a common progenitor only those 
that take place after the time they are born. 

Proposition 1. Let t > 0  and assume that there exist constants M 
and C such that 8Mt  < 1 and 

t lU,lm(t)[l~o4CM '~ forall  m<~n, n = t ,  2 .... (A.1) 

Then the probability density (with respct to dx) for the event that the first 
particle is initially at x and there is at least one head-on collision between 
descendants of the first particle in (0, t) vanishes in the Grad limit 
uniformly in x. 

We can prove analogous statements in the case when more than 
two progenitors are involved. What we are especially interested in is 
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Proposition2 below, in which we are concerned with a conditional 
probability of recollisions, given that 

the first and second particles constitute the phase 

x2 = (q, v; q + el, - v )  ~ 00~ ~) at time 0 (A.2) 

Let l .v  <0. Then two particles in (A.2) are in the outgoing collision. 
The corresponding precollisional phase is denoted by x~'. To have the 
conditional probability well defined, we assume that 

f n j : ( x 2 )  - x *  �9 �9 - f ,12(  2),f,12( ) is continuous at both xz and x* (A.3) 

Proposition 2. Given (q, v)Ef2~ l~c3A, with - l  < l . v < O ,  let f~12 
satisfy the regularity condition (A.3). If (A.1) holds and f,12(x~) is bounded 
away from zero, then the conditional probability, given (A.2), of the event 
that there is a collision between one of the descendants of the first particle 
and that of the second in (0, t) vanishes in the Grad limit. 

As a dual notion to "descendants," we can define the "ancestors" by 
means of the time-reversed flow and state a corresponding result by 
interchanging the roles of time 0 and time t [and accordingly also those of 
u~(t) and f,,] in Propositions 1 and 2. 

For the proof of the propositions we seek an upper bound of the 
probability that there are just k descendants of prescribed particles. For 
x = ( q , v ) ,  t > 0 ,  and 3 = ( s , / , v , j )  [with s=(sl , . . . ,s~),  s l < . . . < s k ,  
v = (vl,..., v~), etc., as in Section 3, but with ~ omitted] let pk(t, x, A) [resp. 
/~k(t, x, A)] denote the probability density (with respect to dx ds dl) for the 
event that the first particle is initially at x and has just [resp. at least] k + 1 
descendants (including the progenitor itself) in (0, t), the vth, v = 1,..., k, of 
which is born with the (precollisional) velocity vv at the site deviating by 
-el~ from the site of the jvth descendant at the time sv. Then we have the 
following result: 

L e m m a .  The probability density pk(t, x, A) is dominated by 

ek(n - 1)k2k/2Unlk+l(t , T~ (~Vk,lkT Sk ~jk, X " Sk-- Sk - l ' ' "  C;),'ll I Tsi x )  (A.4) 

The index a in Cy'~ appearing above equals one, meaning that the 
added particle together with the j th particle at first forms an incoming 
configuration with given velocities, which is to be transformed into the out- 
going configuration as soon as T s operates. [If we are concerned with 
ancestors instead of descendants, (A.4) is to be replaced by an analogous 
expression with a j =  0 that appears in the series expansion (3.1).] 
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Proof of Lemma. Let k =  1. Then, since the free motion (trivially) 
preserves the area dq, ~l(t, x, zf) dq ds~ dli may be written 

(n-1)e21/2 dq dsl dll f~ u~(sl, C~l'hT~ x'x(2)~ sl , J 
(2)_2 

(A.5) 

Here the star indicates that the integral extend over those x(2J= (x3;...; x~) 
that do not cause the first particle to undergo any collision during (0, Sl); 
in other words, in the flow (backward in time) starting with 
(C~lli~T ~ x; x ~2)) the first particle makes no collision in the past period 
( - s~ ,  0). By the measure-preserving property of T| 2) and T} n-z) the quan- 
tity in (A.5) agrees with 

(r l_l )e2U2dqdsldl l  Un(Sl+ds1, T(2)g, vx& 0 .x(2))dx(2) ~-)2 dsl ~1 '1  TslX' (A.6) 

up to o(dq d s  1 d l l )  , which in turn equals ( n -  1) times the probability of the 
event that the first and second particles are in a neighborhood of 
T(2)Cv"t~ds, 1.1 T ~  of area e x /2dq  dsl dll and the first particle has experienced 
no collision during (0, Sl). Therefore, if we further restrict the range of the 
integral in (A.6) to those x (2) that do not cause the first and second 
particles to undergo any collision during (sl +ds~, t), then the resultant 
expression gives the probability p~(t, x, A)dqds t  dll. Now applying the 
transformation T~)s~ d~-~ to change the variable of integration and there- 
after omitting the all constraints on x (2), we finally get an upper bound 
asserted by the lemma. For k~> 2, starting from the expression (A.6) of 
~l(t, x, (Sl ..... Jl)) dq dsl dll, we can proceed as above. [ 

Remark. The proof above also shows 

Pk(t, x, a) <~ ek(n - 1)e2e/2un,k+ l(Sk, C;~, 'lk Tsk-Sk-l ''" ~,,,[1 Tslx ) 

Proof of Proposition I. Because of the lemma and the hypothesis 
(A.1), it suffices to show that in the Grad limit the probability of the event 
that the number of descendants of the first particle is k + 1 vanishes, and 
there is a collision between two of them before the time t. But this is ready 
from the lemma, since in every limiting trajectory of k + 1 descendants 
except those for a null set of s and I no two (point) particles run straight 
against each other on a common line. | 

The proof of Proposition 2 is similarly carried out by extending the 
lemma to the case of two progenitors. 
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